what is engineering Drawing


Engineering drawing is the common language of engineering and describes the process of creating drawings for any engineering or architectural application. Engineering drawings, produced according to accepted standards and format, provide an effective and efficient way to communicate specific information about design intent. Engineering drawings are typically not open to interpretation like other drawings, such as decorative drawings and artistic paintings. A successful engineering drawing describes a specific item in a way that the viewer of the drawing understands completely and without misinterpretation.

The term engineering drawing is also known as drafting, engineering drafting, mechanical drawing, mechanical drafting, technical drawing, and technical drafting. Drafting is a graphic language using lines, symbols, and notes to describe objects for manufacture or construction. Most technical disciplines use drafting, including architecture, civil and electrical engineering, electronics, piping, manufacturing, and structural engineering. The term mechanical drafting has alternate meanings. The manufacturing industry uses mechanical drafting, with its name derived from mechanisms. The construction industry also uses mechanical drafting, but the term refers to drafting heating, ventilating, and air-conditioning (HVAC) systems, which is the mechanical portion of an architectural project.

Manual drafting is a term that describes traditional drafting practice using pencil or ink on a medium such as paper or polyester film, with the support of drafting instruments and equipment. Computer-aided drafting (CAD) has taken the place of manual drafting. CAD uses computers for drafting. CAD also refers to computer-aided design when computers are used to design.

Engineering drawings communicate a variety of concepts, such as engineering requirements, instructions, and proposals, to a variety of people, such as the many different individuals often involved with a project. An engineering drawing or a complete set of engineering drawings provides all of the data required to manufacture or construct an item or product, such as a machine part, consumer product, or structure.

ENGINEERING DRAWINGStudy the drawing of the medical instrument part in Figure. The drawing completely and unmistakably describes the size and location of all geometric features, and it identifies other characteristics of the part, such as material and manufacturing precision and processes. The medical instrument company uses the drawing to share and document design intent and to manufacture the part. Consider how difficult it would be to explain the part without the engineering drawing.


ENGINEERING DRAWING AUSTRALIAThe figure shows another example of an engineering drawing, an architectural drawing for a home-remodelling project.

This engineering drawing is an architectural drawing for a home-remodelling project. The drawing is one sheet in a set of drawings that communicates architectural style, the size and location of building features, and construction methods and materials.

The drawing is one sheet in a set of drawings that communicates architectural style, the size and location of building features, and construction methods and materials. The set of drawings is also required to obtain a loan to pay for construction, to acquire building permits to legally begin construction, and to establish accurate building cost estimates. Usually, it is legally impossible and certainly impractical to begin construction without engineering drawings.

Computers in Design and Drafting

The use of computers has revolutionized business and industry process, including design and drafting practices. Computer-aided design and drafting (CADD) is the process of using a computer with CADD software for design and drafting applications. Software is the program or instructions that enable a computer to perform specific functions to accomplish a task. CAD is the acronym for computer-aided design, but CAD is also a common reference to computer-aided drafting. Computer-aided design and computer-aided drafting refer to specific aspects of the CADD process. The use of CADD has made the design and drafting process more accurate and faster. Several industries and most disciplines related to engineering and architecture use CADD. Most engineering firms and educational institutions that previously used manual drafting practices have evolved to CADD.

CADD allows designers and drafters to produce accurate drawings that are very neat and legible and matched to industry standards. CADD can even produce architectural drawings, which have always had an artistic flair with lettering and line styles, to match the appearance of the finest handwork available. In addition, CADD drawings are consistent from one person or company to the next. CADD enhances the ability for designers and drafters to be creative by providing many new tools such as solid modelling, animation, and virtual reality.

Australian Design & Drafting Services provide excellent service for CAD Design and  Drafting. Contact Us for more info


Engineering designs


Engineering drawing and design is a broad subject that includes a wide range of theory and practice. Many different forms of drawing exist. Drawing occurs while at the lunch table as a basic sketch of a new product idea drawn on a napkin. Drawing also occurs in the form of a series of very complex models for a new automotive design and as hundreds of formal drawings needed for the construction of a skyscraper. You will learn the purpose and requirements to create meaningful engineering drawings as you use this textbook to study engineering drawing and design.

Engineering design applications offer an early explanation and systematic problem-solving techniques applied to specific engineering projects or general design and drafting concepts. The engineering design application in this post guides you through a basic example of an engineering design process, beginning with an idea and a basic sketch and ending with the manufacture of an actual product.

From an Idea to a Product

Design ideas and engineering projects often establish or occur in informal settings. For instance, the engineer of a hand-tool manufacturing company was using a typically adjustable wrench to complete a common home-repair task. While using the wrench, the engineers discovered that it was diffi cult to access a confined location to remove a nut on a piece of equipment. The engineer imagined how the company could design, manufacture, and market a new wrench with features that help make the tool usable in cramped locations. The next day, the engineer and a colleague from the drafting department met for coffee. The engineer sketched the idea for the new wrench on a napkin to communicate the design to the drafter.


The sketch shows the idea of taking the existing tool design and creating a new handle with an ogee, or S-shaped curve design. The sketch communicates the idea of taking an existing tool and creating a new handle with an ogee, or S-shaped curve design





THE ENGINEERING DESIGN APPLICATION fig1.2aLater the same day, the drafter opens the three- dimensional (3-D) solid model files of the existing wrench design on the computer-aided design and drafting (CADD) system (see Figure).




THE ENGINEERING DESIGN APPLICATION fig1.2bThe drafter copies and then revises the existing design according to the engineer’s sketch (see Figure). The drafter presents the new model to the engineer, who is pleased with the results and requests a rapid prototype. Rapid prototyping (RP) is the process of creating a physical and functional model from a computer-generated 3-D model, using an RP machine, also known as a 3-D  printer. RP machines are available that build prototypes from various materials such as paper and liquid polymer. The hand-tool company does not have an RP machine, so the drafter sends files of the design to a company that specializes in RP. The drafter and engineer receive a prototype two days later.


THE ENGINEERING DESIGN APPLICATION fig1.3The figure shows the prototype of the new wrench design. The design team tests the prototype in an application similar to what the engineer experienced at home. The prototype worked as expected.





THE ENGINEERING DESIGN APPLICATION fig1.4aBy the next afternoon, the drafter completes the set of working drawings shown in Figure and sends the drawings to the manufacturing department to manufacture and assemble the new product. The manufacturing department needs lead time to design and make the forging dies required to reproduce the parts. Lead time is the time interval between the initiation and the completion of a production process. Forging is the process of shaping malleable metals by hammering or pressing between dies that duplicate the desired shape. The hand-tool company is small, so the drafter is also responsible for creating catalogue art and copy for marketing the product.




detail drawingsAssembly Drawings and Parts List & Detail drawing of the new wrench body part







jaw part drawingsDetail drawing of the new wrench JAW part.






gear part drawingsDetail drawing of the new wrench GEAR part.






part drawings for pinDetail drawing of the new wrench PIN part.






THE ENGINEERING DESIGN APPLICATION fig1.6Less than two months after the engineer had the initial idea, the first production run of new wrenches is ready to sell. The figure shows the finished product.





Australian Design & Drafting Services provide excellent service for CAD Design and  Drafting. Contact Us for more info


2D Drawing


There has been a new trend in CAD designing world for a 3D modelling for complex design and CAD design platform has evolved so much that 2D drawings become the by-product of 3D modelling.

hire architect brisbane sydney

2D drawings are easy to generate but engineers prefer 3D models for complex applications and design generation. When both are easily achievable, they also are a choice of avoiding catastrophe in the longer run. It basically demands foresight to decide and avail a smooth function of fabrication part of the engineering project and business applications on later stages. Engineering documentation is at the heart of the long, storied history of technical draftsmanship. The objective back then is no different from today's challenge: represent an engineering design in the most accurate and concise way possible. Distilling the 3D reality we live in onto sheets of paper involved a carefully considered system of dimensioning and orthographic projections. These days, they might be referred to as 2D Drawings (which is a redundant term if you think about it). The system worked then and it works now. Those who are well-trained in these classical methodologies have difficulty understanding why there should be anything else. Why fix what ain't broke?

To think that 2D drawing has been trashed out with the advent of 3D CAD modelling is far from reality. 2D drafting still has a very prominent place amongst the industrial product designers, and they have their own reasons for it.

2D is the best option when you are facing tight deadlines and the designs are to be developed for a single component or a single part. Basic geometries are easy to generate in 2D CAD sketching tools and are quick. They are intriguing when the drawings do not need any functionalities of 3D and require less space. A designer of any skill sets can easily work with 2D CAD and nearly any desktop will support 2D drafting.

For a crystal clear usage, engineers still use 2D drafts for fabrication drawings, plans, elevation, sectional drawings and shop floor drawings for fabrication. In fact, it is quite surprising that approximately 30% of engineering design firms and design engineers still use paper to design the initial concept sketched and then resort to 2D CAD for digitization.

Despite these benefits, there are a few drawbacks of using 2D. When sectional views are generated in 2D, updating them is time-consuming and also prone to errors. Also, 2D CAD software does not have rendering capabilities. This means, it involves an additional step to export and convert designs into 3D models before rendering.

So for a fact, just to save time, you are doing two more steps, exporting and converting before any other action is being taken– literally two for one. It reduces productivity and lengthens the designing cycle. For these reasons, industry-wide shift to 3D modelling is witnessed among mechanical and industrial product design engineers.

In contrast, the classic engineering drawing is fraught with limitations:

  • Interpretation Issues: A properly executed drawing shouldn't be subject to misinterpretation, but that skill is starting to become something of a lost art. Unclear depictions can be problematic (i.e. which surface did that leader line touch?). More disturbingly, errors can easily escape detection. Sure, most of that can be mitigated with carefully defined GD&T, but that too seems to be a fading skill. PMI improves upon these limitations by clearly associating surfaces and endpoints and providing validation that such dimensions do indeed make logical sense.
  • Manual Inspection: Drawings necessitate reinterpretation by humans on the other side of the manufacturing lifecycle. It's another way to introduce error: the botched inspection. PMI sets the stage for automated inspection, accelerating manufacturing processes while simultaneously improving quality.
  • Time is Money: This is where drawings go for the BRAINS... Simply put, in today's constantly accelerating demand to crank out the engineering in less time, drawings just take too long. Increased market pace demands more efficient processes. An engineer who's spent considerable time defining a model, shouldn't have to spend much longer documenting it. The days of modelling something then throwing it over a fence to lay it out are over. These two aspects of the design must occur simultaneously, and this ultimately is only possible with the model-based definition.

3D Models: Make a three-way profit

As business needs became bigger, design cycles were required to get shorter and engineering lead time needed to get easier and without errors; this is when more and more engineers started resorting to 3D CAD software. The advantage of using 3D CAD over 2D CAD is that it reduces the design cycle time to almost half and gives a competitive advantage to designers as well as fabricators by accommodating alterations, much fasters.

Another takeaway with 3D CAD is that it offers excellent workaround while generating rapid prototypes. And with additive manufacturing gaining momentum over traditional manufacturing practices, 3D CAD is the way to adapt to easily transform designs into tangible products.

Since additive manufacturing is a process that eliminates material cutting, it has a dramatic control over scrap produced. This is one among many reasons why this phenomenon has gained traction for every fabricator in any industry – be it industrial sheet metal tools, automotive, building products, furniture or any other that one can think of.

Such a paradigm shift makes it even more important than ever to adopt 3D CAD and drop 2D drafting process for saving material, directly targeting to increase their profits and connects the digital thread opportunity directly with the designs.

Other than these three major benefits, 3D CAD usually offers more functionality to the user. These functionalities encompass 3D arrays, special views, referencing and much more. But at times these are too many for generating basic part models like line-types, line-weights, and other form features are good to go. In such times, it feels that 2D drawings should be preferred instead of 3D.

Also because since 3D CAD is advanced, licensing is much expensive and renewing it each time the software company rolls-out new version, [not to mention it happens almost every year] it costs heavily to designers. Thus, it is much needed to weigh your needs of design requirements and analyze the cost you are paying for it.

By now, you must have realized that, on the contrary to popular belief, there will be times when you’ll find 2D CAD to be the need of the hour and not 3D models. While during the other times, you’ll find your designing world revolving in the three dimensions of 3D CAD models, whatever be your need – fabrication, design intent clarity or profits – to avoid catastrophe and binge working at the last moment. The hitch is that you select the one that addresses most of your needs since there isn’t any single CAD system that will address all your design and fabrication needs.

2D Drawing

How to Hire the Right Architect

When you make the decision to build a new home, there are a lot of things to consider:

  • Neighbourhood

  • Accessibility

  • Land or Area

  • Budget / Capital

No matter where you end up, perhaps the most important decision you make is that who will be the
architect. If you haven’t worked with one before, you may wonder whether your project really requires an architect, most especially if it will be your personal residence.

Hiring an architect is critical for any building project to be successful. The architect is the source of the outcome, and he or she will handle a number of duties. Among them, helping clients explore what appeals to them aesthetically and what they require functionally, coordinating teams of design, engineering and construction professionals and sorting through the maze of building codes and zoning requirements to ensure projects are built the way they were planned.

Some people thought they could design their dream home on their own. And in the end they will just find that it’s a big mistake..

The professional architect is the one who has the proper education, training, experience, and vision to guide us through the entire design and construction process;

  • help us define what we want to build,

  • help us get the most for our construction.

Should be a “Problem Solver”
That is what architects are trained to do, solving problems in creative ways. With their broad knowledge of design and construction, architects can show alternative options we might never think of on our own.

  • Professional interpreters of client’s dreams, visions, and objectives

  • Explorers of all possibilities

  • Studying and responding to the site and its environment

  • Home Design Translators that will exceed expectations

Should be a “Finance Specialist” (building construction)

An architect pays for his own way through the

  • lot selection,

  • design,

  • construction documents,

  • bidding and negotiation,

  • the construction phase of a custom residence project.

An architect’s input can save the owner’s money and/or add value to the project.

Because a well-conceived project can be built more efficiently and economically. Architects plan projects with us. As your ideas evolve, changes can be made on paper, much less expensively than when construction is going on. Though 3D Architectural Renderings also make it easier for the contractor to accurately price and build the project.

Energy-efficient buildings can save money on fuel bills down the road. An architect can design a building to maximize heating from the sun and let in natural light, thus reducing heating, cooling, and electric bills over time.

Can work with the budget and help us select the appropriate materials and workmanship at a fair price. Architects develop the drawings and specifications to help us get bids for construction that are based on our requirements.

Can help us choose materials and finishes that are durable as well as saving on frequent maintenance and replacement costs. Architects work to stay abreast of advances in roofing, brickwork, floor tiling, paint finishes, etc. Their familiarity with the full range of materials enables them to suggest the appropriate materials for the project.

Good design sells. A well-designed house has a higher resale value. A well-designed store draws customers. A well-designed work environment attracts employees and increases productivity.

Architects are like Machines = Easy Life

The building is a long process that is often messy and disruptive, particularly if you are living or working in the space under construction. They have an all the ideas that will make us contented on the design they offered. The architect looks out on our interests and they try to find ways to make that process go smoothly.

Australian Design & Drafting Services provide excellent service for CAD Design and  Drafting. Contact Us for more info


AutoCAD 2016, AutoCAD’s Latest Release, Visual Accuracy

How to use Autocad New feature Visual Accuracy

The new release of AutoCAD 2016 features certain significant improvements. These improvements include a more comprehensive canvas, richer design context, and intelligent tools such as Smart Dimensioning, Coordination Model, Enhanced PDFs, and Stunning Visual Experience.

AutoCAD software tools are known worldwide for providing 2D and 3D design features, documentation and collaboration processes for any design task. Furthermore, the software tools enable designers to share their work with one another by using TrustedDWG® technology.

The purpose of this article is to:

  • Look briefly at the new features present in the newest AutoCAD release,
  • Identify significant changes between the newest and previous software releases,
  • Determine the impact of Visual Accuracy and other major benefits which the newest release of AutoCAD provides.

What New Features are Present in the Autocad 2016 Newest Release?

  • With Smart Dimensioning, appropriate measurements are created automatically, based on the drawing context. Bypassing the cursor over a selected object, the designer gets a preview of the dimension before creating it. For example, by selecting and holding a cursor over the cross-section of a duct, modified inner and outer diameters can be previewed before they are created.
  • The Coordination Model makes it possible to attach and view Navisworks® and BIM 360 Glue models directly inside AutoCAD. This makes it possible to import architectural design data created by Navisworks or to import a building design project into AutoCAD. The ability to merge design data between AutoCAD and BIM models provides the framework for KBE (Knowledge-Based Engineering), and for maintaining concurrency and synergy between product design teams.
  • The Enhanced PDFs feature makes it possible to quickly create smarter, smaller and powerful PDF files which are text searchable.
  • The Visual Experience feature enables the engineer to see design details with certain visual enhancements such as Line Fading. True curves are used instead of line segments for image rendering. For example, a circle is created as a continuous curve rather than several straight line segments. Instead of performing several Undo operations, a Command preview enables the designer to see the results of a command before committing to it. Large selection sets are easier to copy or move.
  • The designer is able to customize his/her design environment and systems settings and to prevent unwanted changes from being made.

In What Areas Are There Significant Software Changes?

The following list highlights significant software changes between AutoCAD 2016 (newest release) and previous versions of AutoCAD.

In terms of User Interaction, AutoCAD 2016 provides:

  • The Help Find tool, Improved graphics, Command preview, and resizable viewports are improved in AutoCAD 2016 and AutoCAD 2015.
  • The Move/Copy feature has been boosted in AutoCAD 2016 over previous versions.

In terms of the Design Interface, AutoCAD 2016 provides:

  • Center of polygon object snap
  • High-fidelity lines and curves
  • Coordination model
  • Point cloud dynamic UCS (Unified Computing System) and geometry extraction

In terms of Documentation, AutoCAD 2016 provides:

  • Revision Cloud enhancements
  • Smart dimensioning
  • PDF enhancements and optimized file output
  • The searchable text and hyperlink support in exported PDFs
  • Simplified, powerful rendering
  • Overriding of Xref (External Reference File in a cloud system) layer properties

What Major Benefits does the Newest Release of Autocad Provide?

The previous section of this article mentioned significant software improvements between AutoCAD 2016 and previous versions. It may be informative to look more closely at what some of these software improvements mean.

Coordination Models enable design data from Navisworks and BIM360 models (NWC, NWD) to be attached directly into AutoCAD. This feature supports the collaborative and synergistic product development model available in BIM. This feature also supports KBE (Knowledge-Based Engineering) and Expert Systems, which is important for retaining in-house design expertise and knowledge.

Smart dimensioning speeds up design work, because many “Undo” commands can be avoided by using the Preview feature in the new software release. Instead of establishing a dimension for an object and undoing it in order to create a new dimension, the object can be selected with the cursor, previewed or “hovered over”, before establishing the dimension.

The “Snap to geometric centre” feature enables the designer to snap to the centre of closed regular or irregular polylines.

Improvements to the drawing canvas dramatically improve the visual accuracy seen on screen. Although the human visual system can interpret a series of jagged line segments as an integrated smooth curve, it is much better to represent smooth curves and arcs with true curves. Doing so creates graphic objects with true fidelity and visual acuity, and creates a much better viewing experience.

A number of preset rendering options have been introduced, such as “Coffee-Break Quality”. Image-based lighting has been introduced to improve visual rendering.

The “UI finder” utility makes it easy to find just about anything in AutoCAD’s UI, including entries on the application menu and the status bar.

PDF enhancements create smaller files (about half the size of previous PDFs). The PDFs are generated quicker, and they permit text search and selection, even with multibyte and Unicode characters. Furthermore, SHX fonts (which have the source text added as a comment) are supported. Hyperlinks are maintained, whether they are embedded URLs or links between drawing content.

The System Variable Monitor (Sysvar) protects the design engineer from having his established or preset environment from being altered. In a multi-tasking environment, it is likely that an impolite application may alter sysvar settings, but fail to reset them to their previous settings after the application has completed its tasks.


Although this article sounds as if it is focused on sales or marketing, its purpose is to keep the CAD engineer aware of improved software features (such as improved visual accuracy in AutoCAD 2016) which become available in new CAD software releases.

The CAD engineer works in a fast-paced environment in which technological progress should be expected. In order to stay current and not to become obsolete, it is necessary for the CAD engineer to be aware of improved capabilities in new software releases.

Australian Design & Drafting Services provide excellent Autocad service for CAD Design and Drafting. Contact Us for more info

CAD, Drafting, cad drafting,CAD software

CAD Drafting and Residential Design

Imagine being able to walk through your new home or office building, go into every room, try out different colors on the walls or make changes to the design – before it’s even built. It sounds pretty amazing, and it is. That is the world of CAD (Computer-Aided Design) drafting.

Not too long ago you would find the designer or architect bent over a drafting table using a pencil, ruler and eraser, slowly drafting every detail by hand. Today’s designers use sleek, super-fast computers and CAD software systems that can quickly and perfectly create, edit, then display finished projects in breathtaking 3-D computer renderings.

There are other software systems with similar acronyms, but they are essentially the same application with subtle differences in function. Two of these other systems, CADD (Computer-Aided Design and Drafting) and CAID (Computer-Aided Industrial Design) are the most commonly used.

From the minute you get up in the morning, almost everything you will see or touch or use during the day had its beginnings as a CAD drafting project on a computer somewhere. Your car and every part in it, your electronics, furniture, your home and office, even your deodorant jar and the packages your food comes in were more than likely drafted using CAD.

The History of CAD

Like most great inventions, CAD drafting had humble beginnings, but the potential was immediately apparent. Software companies and thousands of dedicated developers and programmers saw that potential and have worked tirelessly for over 30 years now to develop and bring CAD drafting programs to where they are today. The results have been no less than spectacular.

The initial developments that led to today’s CAD programs were first carried out in the early 1960’s and 1970’s in the aerospace and automotive industries. Both industries were independently developing the first CAD systems. Most people agree that the real breakout point was the development of SKETCHPAD at MIT in 1963. The main feature of SKETCHPAD was that it allowed the designer to work with the program by drawing on the monitor with a light pen. This was essentially the first GUI (Graphical User Interface) and is the most

The first programs were only available to large corporations in the automotive, aerospace and electronics industries. These were the only companies that could afford the expensive computers and computing power needed to do the calculations needed to run the programs. The leaders in developing these first programs were GM, Lockheed and Renault.

The first CAD programs in the 1970’s were only capable of creating 2D drawings similar to the hand-drafted drawings of the time. But even those first simple programs were changing the face of manufacturing and construction design. The programs quickly evolved over the years as computer processing speed and power and graphics capabilities increased. In the 1980’s the next major step toward modern CAD was achieved with the advent of the ability to do 3D solid modeling.

In 1981 two solid modeling packages were released- Romulus by (ShapeData) and Uni-Solid by (Unigraphics). In 1982 John Walker founded Autodesk which developed one of the most famous 2D CAD programs, AutoCAD. In the late 1980’s and early 1990’s the solid modeling kernels for rendering 3D designs were integrated into the new CAD programs for the first time. As computing prices came down, so did the potential and the promise of CAD drafting for smaller companies. This now made it possible for any company to afford a high-quality CAD design program. The 1990’s saw the release of some of the most popular mid-range packages. SolidWorks was released in 1995, SolidEdge was released in 1996, and IronCAD was released in 1998.
Different Types of CAD SystemsMost CAD computer workstations are Windows-based PCs with some running on Unix and a few on Linux machines. Usually no special hardware is needed except for a high-end OpenGL Graphics card for renderings. Also, more is always better when it comes to computing power. A machine with dual-processors and massive amounts of RAM is needed for maximum performance on complex projects.

CAD systems can be separated into three different types: 2D drafting systems like AutoCAD LT (also known as Autocad “Light”); 3D solid feature modelers like Architectural Desktop, Chief Architect, ArchiCAD, Alibre Design, VariCAD SolidWorks and SolidEdge; and high-end 3D hybrid systems like Pro/ENGINEER and NX (Unigraphics).

The human interface is usually a mouse but a trackball or pen and tablet can also be used. The model can be manipulated and viewed from different perspectives and angles. On some systems you can even use stereoscopic glasses for viewing in true 3D.Today there are many low-end 2D systems available and even a number of free and open source programs. All these programs provide an ease of design not possible with hand drafting on a traditional drawing sheet. For example, in 2D drafting a wall in a house would be drawn as 2 parallel lines spaced a certain distance apart, say, 6 inches. To insert a door into the wall, you would follow a process similar to manual drafting- you would first erase part of the wall, then draw in the lines representing a door. In 2D, each line is inserted manually into the design. The end design has no mass properties and you can’t add features such as holes, etc. directly.

With a basic (low-end) 3D modeling program, to draw that same wall you would not have to draw individual lines- instead, you would click on an icon for the ‘draw wall’ command and use your mouse (or trackball) to specify the length and location. To insert a door, you simply specify the size and location of the door- the software automatically erases that portion of the wall where the door goes. Over the course of designing an entire house or building, tools such as these can save countless hours. You can then use the solid model to generate views of the project from any viewpoint or angle- something that 2D programs cannot do.

3D parametric solid modeling represents the high end of CAD. With 3D parametric solid modeling programs such as Alibre Design, Solid Works and Solid Edge, the designer must use what is called ‘design intent’. This means that the design has to be thought of as a real world representation of the object. You are able or unable to make changes to the object the same way you would make them to a real world object. Therefore, parametric solids require the designer to think ahead and consider his actions carefully.

The top-end systems include the ability to add more organic aesthetics and features to the design, such as photorealistic colors and surface textures. Surface modeling combined with solid modeling is used to create most day-to-day products for consumers.The CAD designer should be forward-looking as he designs and the objective should be to make future work on the design as easy as possible. This means the designer needs to have a firm understanding of the system being used. A little extra attention and careful planning in design now can save a lot of grief later.

In the late 1980’s the advent of affordable CAD programs that ran on desktop computers led to downsizing in the drafting departments of many small- to mid-sized companies. Typically one CAD operator could replace three to five drafters using traditional drafting techniques. Also many engineers opted to do their own drafting work which eliminated the need for dedicated drafters.This phenomenon was also reflected in other areas of the typical office. As word processors, databases, spreadsheets, etc. became the norm, many jobs were eliminated as multiple functions across several jobs could now be done by one person on a single computer.

The adoption of the CAD studio, or as it is also called ‘paper-less studio’, in design schools was met with major resistance. Teachers were afraid that designing and sketching on a computer screen could not duplicate the artistry of traditional sketching on a drafting pad. Also, many teachers were worried that students would be hired, not for their design skills, but for their software and computer skills. Today CAD is recognized as an essential design tool and is taught across the board in architecture schools.It is interesting to note that not all architects have joined the CAD bandwagon. Australian architect Glenn Murcutt, winner of the 2002 Pritzker Architecture Prize, has a small office with minimal CAD capability.

Different CAD Industries

CAD drafting is now used in all phases of design across all industries. Specific industries have developed specialized applications of CAD systems. Below are some of the main industries using CAD and their related CAD applications.
The AEC (Architecture, Engineering and Construction) Industry

  • Residential and Commercial Architecture & Design
  • Landscape Architecture
  • Structural Engineering
  • Construction
  • Civil Engineering
  • Mapping and Surveying
  • Highways and Roads
  • Water and Sewer Systems
  • Factory Layout
  • Industrial Plant Design
  • Aerospace
  • Automotive
  • Machinery
  • Consumer Goods
  • Shipbuilding
  • Biomechanical Systems
  • Electronic and Electrical (ECAD)
  • Digital Circuit Design
  • Fashion Design
  • Computer Graphic Animation (CGA)

CAD Drafting Today

One of the major advantages – and one of the biggest payoffs – of CAD drafting today, is the reduction in design time and therefore the amount of money it can save on a project. In manufacturing, CAD drafting helps keep design costs down which translates into cost savings for the consumer.

In residential or commercial design the amount of time saved can be enormous. As an example, let’s say you are looking for a designer or architect to design your home. The designer can create a design: (a) from scratch based on your idea or concept; (b) from photos of actual houses; or (c) based on a previous design which can be easily modified in CAD.

CAD design companies will typically have many different home or building designs available to choose from. It is easy for a client to look through the designs then select one they like. They can use the design as-is or easily customize it to their own tastes. Clients can even take design elements from different projects and combine them to create an entirely new home or building. The possibilities are endless.

Making small changes to a CAD design- for instance, moving walls, windows or even whole rooms- typically takes minutes or hours, not days. This would have been a huge and very expensive task in the days before CAD drafting.

There are many CAD design companies that can serve your residential or commercial design needs and many of them offer complete project management as well as design and drafting of the project.

CAD drafting will no doubt continue to evolve and become more powerful, and remain, next to the computer, as one of the most important technological developments of our age. Australian Design & Drafting Services provide excellent service for CAD Design and  Drafting. Contact Us for more info

CAD, CAD Technology, dynamic modeling, CAD modeling

How CAD Technology benefits from Dynamic Modeling

Alexander Pope, in the 17th century, coined the phrase “A little knowledge is a dangerous thing”. This phrase holds true in many cases, because a small amount of knowledge could lead to overconfidence. An overconfident person is likely to make decisions hastily without taking all facts into account.

What does this phrase have to do with Computer Aided Design? A CAD engineer who is trained primarily to use CAD software tools, but who lacks sound theoretical training, fits this phrase in many respects. Such a CAD engineer who has successfully solved many routine design problems with CAD tools could become overconfident in his/her design skills.

The time will come when this overconfident engineer, who lacks adequate theoretical training, models a non-routine problem incorrectly and misinterprets the results. Consequently, an incorrect design for a product is implemented. Unless the design error is caught and fixed, the launched product will be an accident waiting to happen. Failure of a poorly-designed product could cost a company a lot of time, money, and loss of reputation.

Many CAD and engineering organizations are aware of such dangers, and they include Dynamic Modeling into their product design cycles. Doing so provides “checks and balances” before a design materializes into a product.

This article examines the roles that Dynamic Modeling plays in CAD-driven product design.

Specifically, the article tries to answer these questions:

  • What is Dynamic Modeling, and is it needed for all product designs?
  • Are all CAD engineers qualified to perform CAD enabled dynamic modeling?
  • What are the benefits of Dynamic Modeling?
  • How is Dynamic Modeling being used?

What Is Dynamic Modeling and Is It Needed for all Product Designs?

Dynamic modeling simulates the behavior of an object over time. In engineering, dynamic models are described in terms of causal loops or feedback and control systems.

The causal loop captures the structural makeup or components that comprise a complex system or product, and the interactions between them. Computer models are built to simulate how the system responds to time-varying states and external loads, and how the system responds over time.

Dynamic modeling is not restricted to time-variant behavior of physical structures, but it is also used for artificial intelligence, economics, psychology, political science, and many other disciplines.

Not all products require dynamic modeling. For example, stationary objects such as statues are not subjected often to time varying externals loads such as wind forces or earthquakes. Therefore, static models suffice for determining their structural integrity.

Examples of good candidates for dynamic modeling are:

  • Bridges, which experience variable loadings, wind forces, and perhaps earthquakes.
  • Offshore oil production platforms, which are subjected to ocean waves, wind, and current loadings.
  • Automobiles, which are subjected to shock loadings and aerodynamic forces.
  • Buildings and structures in earthquake-prone areas, because they endure seismic loadings. 

Are all CAD Engineers Qualified to Perform CAD Enabled Modeling?

Not all CAD engineers have the skills to perform dynamic modeling adequately. CAD software tools which provide its capabilities will incorporate them as FEA, CFD, and other software packages. The CAD engineer who has not taken advanced courses in Solid Mechanics, Fluid Mechanics, Feedback and Control Systems, Vibration Analysis, Random Mechanics, and similar courses may lack sufficient theoretical skills to adequately model and interpret non-routine design problems with CAD software.

Dynamic modeling which is performed incorrectly could produce design errors with disastrous consequences, if the errors:

  • Are not detected and corrected by peers,
  • Are not detected during design reviews,
  • Are not detected during the prototyping and testing phase.

Once a poorly designed product is launched, the consequences could mean applying fixes in the field, having a product recall, or withdrawing a product. None of these options is desirable, because it creates customer dissatisfaction, possible lawsuits, loss of income, and loss of reputation.

What are the Benefits of Dynamic Modeling?

If properly performed, Dynamic Modeling can reveal design flaws that may not show up readily during the prototyping and testing phases of the product design cycle.

Unique benefits that dynamic modeling provides include:

  • Identifying interactions between subsystems of a complex product which may be too expensive to create during physical prototyping and testing,
  • Identifying potential failure modes which should be tested in physical prototypes, before hard tooling,
  • Simulating dynamic loadings which may be difficult to create during actual testing,
  • Identifying functional limitations on the use of a product.

Although some complex systems may be difficult to model accurately, it provides extra product performance data from virtual prototypes. Testing and validation of data obtained from virtual prototypes within physical prototypes should create a robust and reliable design.

How is Dynamic Modeling being used?

A few examples should clarify the benefits that Dynamic Modeling brings to CAD design work.

  • Engineers at NIST (National Institute of Standards and Technology) are building a horizontal smokestack computer model called the Scale-Model Smokestack Simulator. The Dynamic Model will predict the amount of carbon dioxide coming out of smokestacks with 1% accuracy, compared with current measurement accuracy of 10 to 20%. This Dynamic Model will make it easier to address the problem of CO2 emissions which the EPA is concerned about.
  • The University of Le Havre uses Dynamic Modeling to efficiently calculate optimized mold measurements for a ship hull.
  • SolidWorks provides modeling software within their CAD offerings for all types of industrial robot movements. The software also translates code from one robot to another, and can import models from major CAD systems.
  • It is being used extensively to study the impact of Self Driving vehicles on traffic flow.


When it is used effectively and correctly, creates virtual product prototypes that can identify failure modes and functional limitations of a design at an early stage.

When dynamic modeling is used together with Additive Manufacturing (or 3D printing) for physical product prototyping, the design cycle could be significantly shortened. Consequently, reliable and cost effective products will be launched, and the cost saving will benefit both the product manufacturer and the consumer.

Australian Design & Drafting Services provide excellent service for CAD Design and  Drafting. Contact Us for more info

3D printing, music industry, music storage, computer-aided design

How Music Industry impacted by 3D Printing

Prior to digital preservation of works of art, books were stored on microfiche, while music, pictures and movies were stored on film. One benefit of storing information in digitized form is that it can be transported electronically, so that backup copies of the information can be placed at many remote locations. Another benefit is that the fidelity of the information is preserved indefinitely.Unfortunately, it is likely that significant amounts of music, movies and works of art may have been lost forever because reliable methods of preserving music were not previously available. For example, lots of music that had been stored on wax discs and were played on phonographs, or many old movies that had been stored on reels may not be restorable. Although many original recordings have now been digitized, natural degradation of wax recordings and tapes have made large amounts of music and movies unrecoverable. Even though many old movies and music have now been digitally remastered, true fidelity of the multimedia data may have been lost.

Works of art that have the most longevity have been preserved in several forms. Some artifacts remain as carvings on stone and wood, some artifacts remain as statues, and some artifacts remain as stylus-based ink recordings on papyri, scrolls, paper, and on other media. Except for stone carvings and statues which could be considered to a reasonable extent as naturally non-destructible, recordings on wood-based products such as papyri, scrolls and paper degrade quickly in high humidity environments. Recordings on wood-based media need low humidity or vacuum storage conditions to survive over long periods of time.

It only takes a natural or man-made disaster to lose objects of cultural and historical value for ever. For example, a significant amount of the rich jazz musical heritage of New Orleans may have been lost during the hurricane Katrina, together with other artifacts that were stored on destructible media.

The need to preserve musical data brings up the question “How has 3D printing impacted the music industry?” To answer this question, it will be helpful to address these topics:

  • What methods have been used historically to store music?
  • What modern methods are now utilized for storing music?
  • How useful is 3D printing for the music industry?

What Methods Have Been Used Historically To Store Music?

The traditional method for storing music relies on writing music on sheets of paper. For example, classical orchestral works by Bach, Mozart, Beethoven and others are available as published sheet music.

This method for storing music cannot provide good longevity and permanence because (a) the medium for storing the music (paper and ink) degrades over time, and (b) the stored music can be easily lost due to fire or floods.

Improvements to storing music utilize an audio format, together with physical recording media.

Over the last 100 years, musical storage relied on the following methods:

  • Prior to the year 1900, audio data in the form of sound waves were transcribed to paper, glass and wax cylinders as mechanical analog signals recorded as lateral grooves. Stylus motion over the grooves was used to render the recorded audio data. Products in this era include the Edison phonograph, the Dictaphone and the phonograph disk.
  • Between 1900 and 1948, improvements to sound recordings utilized magnetization and electrical amplification of analog signals to produce high fidelity audio. Products in this era include the magnetic tape, audio cassettes, and vinyl phonograph discs. Tape speeds ranged from , and discs at.
  • Between 1948 and 1970, significant audio signal processing techniques utilized Dolby noise reduction and stereophonic rendition. Products in this era include the 4-track and 8-track stereo, the compact cassette, the microcassette and the minicassette.
  • After 1970, digital processing technology produced advanced products that utilize audio formats such as MPEG, MLP, and many other audio formats found in products that provide CDs, DVDs, HD DVD, and Blu-ray technology.

What Modern Methods Are Now Utilized For Storing Music?

Because the music library continues to grow at an alarming rate, compression methods have been developed to store voluminous amount of audio data on the cloud, and to make them available to users by using web streaming technology.

Well-known competitors in this audio storage and streaming market place include the following:

  • Apple’s iTunes stores over 43 million songs. The songs can be downloaded on iPhones, iPad, iPod or other Apple-based products. The audio formats are limited to Apple approved formats, but conversion software is available for other formats. The service does not use web streaming.
  • The Amazon Cloud Player provides a service similar to Apple iTunes. However, the Amazon Player utilizes a compression that is lossier than iTunes. Being lossy means that the original music is not rendered with true fidelity. Portions of the audio signal are dropped when rendered in such a way that the human ear cannot easily detect the difference between the true and rendered sound.
  • Google Play Music provides free access to over 30 million songs. Because this service is free, it may be considered a bargain, compared with the other paid services. Both Amazon and Google services utilize web streaming.

How Useful Is 3D Printing For The Music Industry?

An amazing benefit that 3D printing brings is that musical recordings stored in digital format can be recalled and reprinted at will. For sentimental reasons, many people like to play music that was previously available only on phonographs. With 3D printing, both old and modern music can be stored in digital form, to be retrieved and 3D printed on improved durable media. As more sophisticated materials become available for 3D printers, high quality audio recordings can be printed with outstanding audio fidelity and rendition.

Apart from printing musical recordings, 3D printers can print musical instruments such as guitars, drums, pianos and saxophones. The list of musical instruments will grow as more 3D printing materials are discovered.

To summarize, it is reasonable to conclude that 3D printing makes it possible to:

  • Store music digitally and reproduce it faithfully,
  • Print a variety of musical instruments.

Australian Design & Drafting Services provide excellent service for 3D Printing and Prototype Design.Contact Us for more info

difference between IGES and STEP Files

What is difference between IGES and STEP Files?

What is difference between IGES and STEP Files?

  • Both are "neutral file formats". They were developed to be compatible with different 3D packages
  • The oldest is IGES (Initial Graphics Exchange Specification). It was developed in the mid '70s by the defense industry to solve compatibility issues between different software packages
  • STEP (Standard for the Exchange of Product data) was created in the '80s by ISO as an improvement on IGES
  • The most widespread format is IGES but it can only contain basic 2D or 3D data
  • STEP is more versatile and contains additional information such as material information and tolerances

For most design engineers, the following scenario should look familiar: Peter, the lead designer for company X, needs to send a CAD model to Mary, the design engineer for company Y. Peter designed the part using Solidworks and Mary only works in Pro Engineer. Peter’s Solidworks file can’t be opened in Mary’s software, so the simple transfer of a part file has now become a problem.

This issue of non-interchangeable proprietary file formats for CAD data has been around for decades. Software companies want to promote the use of their own modeling packages, and one way to do this is to ensure that only their package can open a file created in their software. Unfortunately, every major 3D modeling software company has done this, so communicating between them is a problem.

Luckily, a solution exists in the form of neutral file formats. A neutral file format is one that can be passed between different modeling software packages. Bob could use a neutral file format to pass his CAD model to Susan, who could then open it and work with it as needed.

The most common variants of these neutral file formats are the IGES (pronounces eye-jess) and STEP formats. You can recognize these formats because the file name will end in .iges, .igs, .stp, or .step.

The History of Neutral file Formats

In the mid-seventies, the United States government realized that it had a problem. With all of the unique proprietary CAD programs used by its different contractors, millions of dollars and countless hours were wasted on the tedious process of sharing and converting data between all the systems. You can imagine how many times this scenario played out on a large project like an aircraft carrier or missile delivery system with hundreds of suppliers!

So, the Air Force launched a project in conjunction with Boeing and several other large industry partners to create a neutral file format. The result was IGES (Initial Graphics Exchange Specification), which is a flexible file format that codifies drawing, 3d geometry, and other critical CAD data in a format that can be shared between all major CAD systems.

Since the eighties, the US Department of Defense has required that the IGES format be used for all weapons and defense contracts, and it has been adopted in other industries as well.

STEP (Standard for the Exchange of Product data) was created in the eighties as an improvement on the IGES standard by ISO (the International Standards Organization), with the goal of creating a global standard for a range of CAD-related data types. Due to the complexity of the undertaking, it has taken years of development and is still being continuously upgraded. It is currently the largest of all of ISO’s standards.

Difference Between IGES and STEP

IGES is the most widespread standard, and is supported by nearly all major CAD systems worldwide.

An IGES file contains basic CAD information:

  • 2D and 3D geometry (curves, surfaces, and wireframes)
  • Presentation elements (drafting elements like lines and annotations)
  • Electronic and pipe schematic elements
  • Finite element modeling elements
  • Language and product definition data

STEP is a newer standard, and is therefore not as widespread as IGES. However, most major CAD programs recognize STEP and its ubiquity is steadily growing as the standard improves.

STEP files contain the same product definition information as IGES, with the following additions:

  • Topology
  • Tolerances
  • Material properties
  • Other complex product data

Practical Considerations

In most cases where solid models or drawings are being shared, either file format will work fine. For compatibility it is safest to start with IGES, since it is the more common format and therefore more likely to work with the receiving party’s software.

However, a designer should also consider the information being shared. If the file being sent needs to contain more product definition (for example, geometric dimensioning and tolerancing data, material properties, etc), then STEP would be a better choice.

It is not uncommon for one supplier to have trouble working with one format, and to request its alternative. Depending on your industry and software, you will likely become familiar with one or the other and stick to it in most situations

Australian Design & Drafting Services provide excellent service for CAD conversions for IGES and STEP file to native file format.Contact Us for more info

Electrical design and drafting brisbane

The New Dimension in Electrical Design Evolution or Revolution?

how electrical engineers moved from paper sketches to 3d

Hi Folks! Its chilling winter here in Australia, so let's have some warms up from electrical design and drafting news..

Over the past 260 years, the way we light our homes and power our businesses has changed dramatically. We’ve traded candles for light bulbs, abandoned the abacus for super computers, and swapped selenium wafers for energy-efficient solar panels. We now have a generation of products that are connected to the internet to improve the quality of our lives–think smart appliances, fitness monitors, and intelligent trash cans.  These innovations reflect advances in scientific thinking—and advances in the way engineers design increasingly complex electrical design systems.

1752: Lightning in a … Kite?electrical design

Benjamin Franklin was an inventor, writer and statesman, but he was also an engineer who developed electrical systems using hand sketches. His best-known feat? Verifying that lightning is actually electricity.

In June 1752, history says that Benjamin Franklin sent a key attached to a homemade kite into the air. “As soon as any of the thunder clouds come over the kite,” he wrote, “the pointed wire will draw the electric fire from them, and the kite, with all the twine, will be electrified.” While there’s a good chance Franklin made up the tale, his theory was ”electrifying.”

1879: A Little Menlo Park Magic

Picking up where Franklin left off, Thomas Alva Edison (aka the Wizard of Menlo Park) held more than 1,000 patents. In 1879, he introduced the electric light bulb. It lasted longer than previous models and employed a carbonized cotton thread filament.

Edison made a host of other contributions to electrical design, including the system of power stations now called General Electric, and schematics continued to be the planning tool of choice.

Although a true technological genius, Edison wasn’t all butterflies and rainbows— he electrocuted puppies, a horse, and an elephant in an attempt to label alternating

current (AC) power as dangerous. He lost this campaign and Nikola Tesla’s AC induction motor won, mechanizing factory work and powering household solidworks electrical designappliances.

But that (admittedly creepy) anecdote hardly tells the full story of Edison’s life. He went on to improve life for generations of Americans with the phonograph, motion pictures, the storage battery, and more.

1907: Vacuum Tubes

Throughout the 20th century, electrical engineers used schematics to represent increasingly complicated systems for radio, medical devices, and computers. In 1907, Lee De Forest patented the audion, which enabled clearly audible sounds such as a human voice to be relayed and amplified using a three-electrode vacuum tube–the world’s first triode.

1929: Machine Packs Serious Voltage

Wiring diagrams based on physical connections entered the electrical engineering vocabulary in 1929, when Alabama native Robert Jemison Van de Graaff built the first working model of an electrostatic accelerator.

Its purpose: accelerate particles, break apart atomic nuclei, and unlock

the secrets of individual atoms. Van de Graaff’s invention is used widely in science classrooms and paved the way for future electrical research.

1947: Transistor Transition

Schematics advanced yet again when electrical engineers began creating them based on logical connections. A major breakthrough occurred in 1947 when John

Bardeen, Walter Brattain, and William Shockley collaborated to demonstrate the transistor— which amplifies or switches electrical signals—at Bell Laboratories. The semiconductor, which paired two gold contacts and a germanium crystal, represented an upgrade from cumbersome vacuum tubes.

1977: We’ve Gone Digital!

By the late 1970s, functions such as placement and routing became available in automatic physicalElectrical design Drawings

electronic design automation (EDA)— marking the birth of the digital schematic. Bell Labs, along with companies such as IBM and RCA, held advanced tools that operated on mainframes or 8-bit minicomputers. In 1977, super minis provided massive amounts of memory for designs.

Today: Entering a New Dimension

For decades, companies have developed products that feature both mechanical and electrical components. The traditional product development process for an electromechanical product has created long design cycles due to sequential electrical and mechanical design, as well as the discontinuities which occur when different groups use different names for common elements.

There are challenges in keeping the Bill of Materials (BOM) accurate through the use of so many spreadsheets. Often, once the electrical design piece has been completed,

it is then handed off to the mechanical design team. After they complete their part of the design, the entertaining part happens when it comes to figuring out how the electrical pieces fit into the product. A physical prototype is built at this point and

the designers get out a ball of string or a measuring tape to figure out how the wiring will fit. Given all the powerful software design tools we have, it’s ironic that we have fallen back to low-tech ways of integrating the electrical and mechanical pieces of the design. As you might expect, this method is prone to introducing lots of errors

and delays into the production process, product documentation, and BOM.

Things have evolved a bit over the last couple years. Electrical schematics entered the third dimension in 2012, when SOLIDWORKS introduced powerful and affordable 3D electrical CAD software for Windows, merging the logical connections championed by Benjamin Franklin with the modern day need to build 3D physical connections.

Using SOLIDWORKS® Electrical software, you can easily design electrical schematics and transform the logical schematics into 3D physical models which integrate into the overall design. SOLIDWORKS Electrical 3D™ integrates with SOLIDWORKS 3D CAD modeling software to enable bi-directional and real-time integration of electrical components within the 3D model maintaining design synchronization and an accurate BOM. In this way, the entire engineering team can collaboratively work on a project concurrently, which not only produces a more integrated design; it can also lower project costs, and shorten time to market.

Another benefit of the integrated SOLIDWORKS solution for electro-mechanical design is the ability to analyze or simulate the operation of the entire model against real-world conditions, such as thermal stress or physical vibration–all without having to build a physical prototype. This seems like “common-sense” (which even a man like Benjamin Franklin would appreciate if he were alive today).

From light bulbs to intelligent trash cans—and from handwritten notes on paper napkins to 3D modeling—one thing is clear: electrical design has entered the next dimension.

Australian Design and Drafting services provides excellent quality Electrical Design and drafting services around Australia in major cities like Brisbane,Sydney,Melbourne,Perth,GoldCoast,Newcastle etc..Feel free to contact us for any requirements.